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Abstract
Applications that process sensitive data can be carefully de-
signed and validated to be difficult to attack, but they are
usually run on monolithic, commodity operating systems,
which may be less secure. An OS compromise gives the
attacker complete access to all of an application’s data, re-
gardless of how well the application is built. We propose a
new system, Virtual Ghost, that protects applications from a
compromised or even hostile OS. Virtual Ghost is the first
system to do so by combining compiler instrumentation and
run-time checks on operating system code, which it uses to
create ghost memory that the operating system cannot read
or write. Virtual Ghost interposes a thin hardware abstrac-
tion layer between the kernel and the hardware that provides
a set of operations that the kernel must use to manipulate
hardware, and provides a few trusted services for secure ap-
plications such as ghost memory management, encryption
and signing services, and key management. Unlike previous
solutions, Virtual Ghost does not use a higher privilege level
than the kernel.

Virtual Ghost performs well compared to previous ap-
proaches; it outperforms InkTag on five out of seven of the
LMBench microbenchmarks with improvements between
1.3x and 14.3x. For network downloads, Virtual Ghost ex-
periences a 45% reduction in bandwidth at most for small
files and nearly no reduction in bandwidth for large files
and web traffic. An application we modified to use ghost
memory shows a maximum additional overhead of 5% due
to the Virtual Ghost protections. We also demonstrate Vir-
tual Ghost’s efficacy by showing how it defeats sophisticated
rootkit attacks.
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1. Introduction
Applications that process sensitive data on modern commod-
ity systems are vulnerable to compromises of the under-
lying system software. The applications themselves can be
carefully designed and validated to be impervious to attack.
However, all major commodity operating systems use large
monolithic kernels that have complete access to and control
over all system resources [9, 25, 32, 34]. These operating
systems are prone to attack [21] with large attack surfaces,
including large numbers of trusted device drivers developed
by numerous hardware vendors and numerous privileged ap-
plications that are as dangerous as the OS itself. A compro-
mise of any of these components or of the kernel gives the
attacker complete access to all data belonging to the appli-
cation, whether in memory or offline. Developers of secure
applications running on such a system generally have no
control over any of these components and must trust them
implicitly for their own security.

Several previous projects [11, 16, 22, 37] have created
systems that protect applications from a compromised, or
even a hostile, operating system. These systems have all
used hardware page protection through a trusted hypervi-
sor to achieve control over the operating system capabilities.
They rely on a technique called shadowing or cloaking that
automatically encrypts (i.e., shadows or cloaks) and hashes
any application page that is accessed by the operating sys-
tem, and then decrypts it and checks the hash when it is next
accessed by the application. System call arguments must be
copied between secure memory and memory the OS is al-
lowed to examine. While these solutions are effective, they
have several drawbacks. First, they rely upon encrypting any
of an application’s memory that is accessed by the OS; an



application cannot improve performance by protecting only
a selected subset of data, or requesting only integrity checks
on data but not confidentiality (i.e., only using hashing and
not encryption). Second, they assume the OS runs as a guest
on a standard hypervisor, which may not be attractive in
certain settings, such as energy-constrained mobile devices.
Third, they require that all system call arguments must al-
ways be copied, even if the data being transferred is not
security-sensitive, which is the common case in many ap-
plications. Fourth, these solutions do not provide any secu-
rity benefits to the kernel itself; for example, control flow
integrity or memory safety for the operating system kernel
cannot reuse the mechanisms developed for shadowing.

We propose a new approach we call ghosting that ad-
dresses all these limitations. Our system, Virtual Ghost, is
the first to enforce application security from a hostile OS us-
ing compiler instrumentation of operating system code; this
is used to create secure memory called ghost memory, which
cannot be read or modified at all by the operating system (in
contrast, previous systems like Overshadow [11] and Ink-
Tag [16] do not prevent such writes and only guarantee that
the tampering will be detected before use by the applica-
tion). Virtual Ghost introduces a thin hardware abstraction
layer that provides a set of operations the kernel must use to
manipulate hardware, and the secure application can use to
obtain essential trusted services for ghost memory manage-
ment, encryption, signing, and key management. Although
the positioning of, and some of the mechanisms in, this layer
are similar to a hypervisor, Virtual Ghost is unique because
(a) unlike a traditional hypervisor, there is no software that
runs at a higher privilege level than the kernel – in partic-
ular, the hardware abstraction layer runs at the same privi-
lege level; (b) Virtual Ghost uses (simple, reliable) compiler
techniques rather than hardware page protection to secure its
own code and data; and (c) Virtual Ghost completely denies
OS accesses to secure memory pages, not just encrypting
and signing the pages to detect OS tampering.

Moreover, the compiler instrumentation in Virtual Ghost
inherently provides strong protection against external ex-
ploits of the OS. First, traditional exploits, such as those that
inject binary code, are not even expressible: all OS code must
first go through LLVM bitcode form and be translated to na-
tive code by the Virtual Ghost compiler. Second, attacks that
leverage existing native code, like return-oriented program-
ming (ROP) [31], require control-flow hijacking, which Vir-
tual Ghost explicitly prevents as well. In particular, Virtual
Ghost enforces Control Flow Integrity (CFI) [3] on kernel
code in order to ensure that the compiler instrumentation
of kernel code is not bypassed. CFI automatically defeats
control-flow hijacking attacks, including the latter class of
external exploits. Together, these protections provide an ad-
ditional layer of defense for secure applications on poten-
tially buggy (but non-hostile) operating systems.

Another set of differences from previous work is in the
programming model. First, applications can use ghost mem-
ory selectively for all, some, or none of their data. When
using it for all their data, the secure features can be obtained
transparently via a modified language library (e.g., libc for C
applications), just as in previous work. Second, applications
can pass non-ghost memory to system calls without the per-
formance overheads of data copying. Third, when sending
sensitive data through the operating system (e.g., for I/O),
ghost applications can choose which encryption and/or cryp-
tographic signing algorithms to use to obtain desired perfor-
mance/security tradeoffs, whereas previous systems gener-
ally baked this choice into the system design. Finally, a use-
ful point of similarity with previous work is that the usability
features provided by previous systems (e.g., secure file sys-
tem services in InkTag) are orthogonal to the design choices
in Virtual Ghost and can be directly incorporated.

We have developed a prototype of Virtual Ghost and
ported the FreeBSD 9.0 kernel to it. To evaluate its effec-
tiveness, we ported three important applications from the
OpenSSH application suite to Virtual Ghost, using ghost
memory for the heap: ssh, ssh-keygen, and ssh-agent.
These three can exchange data securely by sharing a com-
mon application key, which they use to encrypt the private
authentication keys used by the OpenSSH protocols.

Since exploiting a kernel that runs on Virtual Ghost via an
external attack is difficult, we evaluated the effectiveness of
Virtual Ghost by adding a malicious module to the FreeBSD
kernel, replacing the read system call handler. This module
attempted to perform two different attacks on ssh-agent,
including a sophisticated one that tries to alter application
control flow via signal handler dispatch. When running with-
out Virtual Ghost, both exploits successfully steal the desired
data from ssh-agent. Under Virtual Ghost, both exploits
fail and ssh-agent continues execution unaffected.

Our performance results show that Virtual Ghost outper-
forms InkTag [16] on five out of seven of the LMBench
microbenchmarks, with improvements between 1.3x and
14.3x. The overheads for applications that perform mod-
erate amounts of I/O (thttpd and sshd) is negligible, but the
overhead for a completely I/O-dominated application (post-
mark) was high. We are investigating ways to reduce the
overhead of postmark.

The rest of the paper is organized as follows. Section 2
describes the attack model that we assume in this work. Sec-
tion 3 gives an overview of our system, the programmer’s
view when using it, including the security guarantees the
system provides. Section 4 describes our design in detail,
and Section 5 describes the implementation of our prototype.
Section 6 describes our modifications to secure OpenSSH
applications with our system. Sections 7 and 8 evaluate the
security and performance of our system. Section 9 describes
related work, Section 10 describes future work, and Sec-
tion 11 concludes the paper.



2. System Software Attacks
In this section, we briefly describe our threat model and then
describe the attack vectors that a malicious operating system
might pursue within this threat model.

2.1 Threat Model
We assume that a user-space (i.e., unprivileged) application
wishes to execute securely and perform standard I/O opera-
tions, but without trusting the underlying operating system
kernel or storage and networking devices. Our goal is to pre-
serve the application’s integrity and confidentiality. Avail-
ability is outside the scope of the current work; we dis-
cuss the consequences of this assumption further, below. We
also do not protect against side-channel attacks or keyboard
and display attacks such as stealing data via keyboard log-
gers or from graphics memory; previous software solutions
such as Overshadow [11] and InkTag [16] do not protect
against these attacks either, whereas hardware solutions such
as ARM’s TrustZone [6] and Intel’s SGX [24] do.

We assume that the OS, including the kernel and all de-
vice drivers, is malicious, i.e., may execute arbitrary hostile
code with maximum privilege on the underlying hardware.
We do not assume that a software layer exists that has higher
privilege than the OS. Instead, we assume that the OS source
code is ported to a trusted run-time library of low-level func-
tions that serve as the interface to hardware (acting as a hard-
ware abstraction layer) and supervise all kernel-hardware in-
teractions. The OS is then compiled using a modified com-
piler that instruments the code to enforce desired security
properties, described in later sections.1 We assume that the
OS can load and unload arbitrary (untrusted) OS modules
dynamically, but these modules must also be compiled by
the instrumenting compiler. Moreover, we assume that the
OS has full read and write access to persistent storage, e.g.,
hard disk or flash memory.

We do not prevent attacks against the application itself.
In practice, we expect that a secure application will be care-
fully designed and tested to achieve high confidence in its
own security. Moreover, in practice, we expect that a secure
application (or the secure subsets of it) will be much smaller
than the size of a commodity OS, together with its drivers
and associated services, which typically run into many mil-
lions of lines of code. For all these reasons, the developers
and users of a secure application will not have the same level
of confidence in a commodity OS as they would in the ap-
plication itself.

Application availability is outside the scope of the cur-
rent work. The consequence, however, is only that an at-
tacker could deny a secure application from making forward
progress (which would likely be detected quickly by users

1 It is reasonable to expect the OS to be ported and recompiled because, in
all the usage scenarios described in Section 1, we expect OS developers to
make it an explicit design goal to take the OS out of the trusted computing
base for secure applications.

or system administrators); she could not steal or corrupt data
produced by the application, even by subverting the OS in
arbitrary ways.

2.2 Attack Vectors
Within the threat model described in Section 2.1, there are
several attack vectors that malicious system software can
take to violate an application’s confidentiality or integrity.
We describe the general idea behind each attack vector and
provide concrete example attacks.

2.2.1 Data Access in Memory
The system software can attempt to access data residing in
application memory. Examples include:

• The system software can attempt to read and/or write ap-
plication memory directly via load and store instructions
to application virtual addresses.

• Alternatively, the OS may attempt to use the MMU to
either map the physical memory containing the data into
virtual addresses which it can access (reading), or it may
map physical pages that it has already modified into the
virtual addresses that it cannot read or write directly
(writing).

• The system software can direct an I/O device to use DMA
to copy data to or from memory that the system software
cannot read or write directly and memory that the system
software can access directly.

2.2.2 Data Access through I/O
A malicious OS can attempt to access data residing on I/O
devices or being transferred during I/O operations. Examples
include:

• The OS can read or tamper with data directly from any
file system used by the application.

• The OS can read or tamper with data being transferred
via system calls to or from external devices, including
persistent storage or networks.

• The OS can map unexpected blocks of data from I/O de-
vices into memory on an mmap system call, effectively
substituting arbitrary data for data expected by the appli-
cation.

2.2.3 Code Modification Attacks
A malicious OS may attempt to change the application code
that operates upon application data, in multiple ways, so
that the malicious code would execute with the full memory
access and I/O privileges of the application. Some examples:

• The OS can attempt to modify the application’s native
code in memory directly.

• The OS could load a malicious program file when starting
the application.



• The OS could transfer control to a malicious signal han-
dler when delivering a signal to the application.

• The OS could link in a malicious version of a dynami-
cally loaded library (such as libc) used by the application.

2.2.4 Interrupted Program State Attacks
A malicious OS can attempt to modify or steal architectural
state of an application while the application is not executing
on the CPU. Examples include:

• Malicious system software could attempt to read inter-
rupted program state to glean sensitive information from
program register values saved to memory.

• Alternatively, it could modify interrupted program state
(e.g., the PC) and put it back on to the processor on a
return-from-interrupt or return-from-system call to redi-
rect application execution to malicious code.

2.2.5 Attacks through System Services
A more subtle and complex class of attacks is possible
through the higher-level (semantic) services an OS provides
to applications [10, 28]. While these attacks are still not well
understood, our solution addresses an important subset of
them, namely, memory-based attacks via the mmap system
call (the same subset also addressed by InkTag). Examples
include the following:

• The OS is the source of randomness used by pseudoran-
dom number generators to create random seeds, e.g., via
the device /dev/random. The OS can compromise the de-
gree of randomness and even give back the same ran-
dom value on different requests, violating fundamental
assumptions used for encrypting application data.

• The OS could return a pointer into the stack via mmap [10],
thereby tricking the application into corrupting its stack
to perform arbitrary code execution via return-to-libc [35]
or return-oriented programming [31].

• The OS could grant the same lock to two different threads
at the same time, introducing data races with unpre-
dictable (and potentially harmful) results.

It is important to note that the five categories of attack
vectors listed above are intended to be comprehensive but
the specific examples within each category are not: there
may be several other ways for the OS to attack an applica-
tion within each category. Nevertheless, our solution enables
applications to protect themselves against all attacks within
the first four categories and a subset of attacks from the fifth.

3. Secure Computation Programming Model
The key feature we provide to a secure application is the
ability to compute securely using secure memory, which we
refer to as ghost memory, and to exchange data securely with
external files and network interfaces. Applications do not

have to be compiled with the SVA-OS compiler or instru-
mented in any particular way; those requirements only apply
to the OS. In this section, we discuss the programmer’s inter-
face to secure computation. In Section 4, we show how our
system, which we call Virtual Ghost, prevents the operating
system from violating the integrity or confidentiality of an
application that uses secure computation.

3.1 Virtual Ghost Memory Organization
Virtual Ghost divides the address space of each process into
three partitions. The first partition holds traditional, user-
space application memory while a second partition, located
at the high end of the virtual address space, holds tradi-
tional kernel-space memory. The kernel space memory is
mapped persistently and is common across all processes,
while the user-space memory mappings change as processes
are switched on and off the CPU. Operating systems such
as Linux and BSD Unix already provide this kind of user-
space/kernel-space partitioning [9, 25].

A new third partition, the ghost memory partition, is
application-specific and is accessible only to the application
and to Virtual Ghost. Physical page frames mapped to this
partition hold application code, thread stacks, and any data
used by secure computation. These page frames logically
belong to the process and, like anonymous mmap() memory
mappings, are unmapped from/mapped back into the virtual
address space as the process is context switched on and off
the processor.

Some applications may choose not to protect any of their
memory, in which case the Ghost memory partition would
go unused (their code and thread stacks would be mapped
into ordinary application memory). Others may choose to
protect all of their memory except a small portion used to
pass data to or from the operating system. The latter config-
uration is essentially similar to what Overshadow provides,
and Virtual Ghost provides this capability in the same way
– by interposing wrappers on system calls. This is described
briefly in Section 6.

3.2 Ghost Memory Allocation and Deallocation
An application wishing to execute securely without trusting
the OS would obtain one or more chunks of ghost memory
from Virtual Ghost; this memory is allocated and deallocated
using two new “system calls” shown in Table 1. The in-
struction allocgm() asks Virtual Ghost to map one or more
physical pages into the ghost partition starting at a specific
virtual address. Virtual Ghost requests physical page frames
from the operating system, verifies that the OS has removed
all virtual to physical mappings for the frames, maps the
frames starting at the specified address within the applica-
tion’s ghost partition, and zeroes out the frames’ contents.
The instruction freegm() tells Virtual Ghost that the block
of memory at a specified virtual address is no longer needed
and can be returned to the OS. Virtual Ghost unmaps the



Name Description
allocgm(void * va, uintptr t num) Map num page frames at the virtual address va (which must be within the ghost memory region).
freegm(void * va, uintptr t num) Free num page frames of ghost memory starting at va (which must be previously allocated via allocgm)

Table 1. Ghost Memory Management Instructions

frames, zeroes their contents, and returns them to the oper-
ating system.

These instructions are not designed to be called directly
by application-level code (although they could). A more
convenient way to use these instructions is via a language’s
run-time library (e.g., the C standard library), which would
use them to create language allocation functions that allocate
ghost memory, e.g., using a modified version of malloc.

Note that ghost memory pages cannot be initialized using
demand-paging from persistent storage into physical mem-
ory. Ghost Memory is like anonymous mmap memory, which
Virtual Ghost can provide to an application at startup and
when the application allocates it via allocgm(). To get data
from the network or file system into ghost memory, the ap-
plication must first read the data into traditional memory
(which is OS accessible) and then copy it (or decrypt it) into
ghost memory. Other systems (e.g., InkTag [16]) perform the
decrypt/copy operation transparently via the demand-paging
mechanism. By requiring the application to decrypt data ex-
plicitly, Virtual Ghost avoids the complications of recovering
encrypted application data after a crash (because the encryp-
tion keys are visible to the application and not hidden away
within the Virtual Ghost VM). It also gives the application
more flexibility in choosing different encryption algorithms
and key lengths. Furthermore, this approach simplifies the
design and reduces the size of Virtual Ghost, thus keeping
Virtual Ghost’s Trusted Computing Base (TCB) small.

3.3 I/O, Encryption, and Key Management
Applications that use ghost memory require secure mecha-
nisms for communicating data with the external world, in-
cluding local disk or across a network. Duplicating such I/O
services in Virtual Ghost would significantly increase the
size and complexity of the system’s TCB. Therefore, like
Overshadow [11] and InkTag [16], we let the untrusted OS
perform all I/O operations. Applications running on Virtual
Ghost must use cryptographic techniques (i.e., encryption,
decryption, and digital signatures) to protect data confiden-
tiality and detect potential corruption when writing data to
or reading data from the OS during I/O.

Upon startup, applications need encryption keys to ac-
cess persistently stored data (such as files on a hard drive)
stored during previous executions of the application. Virtual
Ghost provides each application with an application-specific
public-private key pair that is kept secure from the OS and
all other applications on the system. The application is re-
sponsible for encrypting (decrypting) secret data using this
key pair before passing the data to (after receiving the data

from) explicit I/O operations. Wrappers for widely used I/O
operations such as read() and write() can make it largely
transparent for applications to do the necessary encryption
and decryption.

Using encryption for local IPC, network communication,
and file system data storage allows applications to protect
data confidentiality and to detect corruption. For example, to
protect data confidentiality, an application can encrypt data
with its public key before asking the OS to write the data to
disk. To detect file corruption, an application can compute a
file’s checksum and encrypt and store the checksum in the
file system along with the contents of the file. When reading
the file back, it can recompute the checksum and validate
it against the stored value. The OS, without the private key,
cannot modify the file’s contents and update the encrypted
checksum with the appropriate value.

Unlike programmed I/O, swapping of ghost memory is
the responsibility of Virtual Ghost. Virtual Ghost maintains
its own public/private key pair for each system on which
it is installed. If the OS indicates to Virtual Ghost that it
wishes to swap out a ghost page, Virtual Ghost will encrypt
and checksum the page with its keys before providing the
OS with access. To swap a page in, the OS provides Virtual
Ghost with the encrypted page contents; Virtual Ghost will
verify that the page has not been modified and place it back
into the ghost memory partition in the correct location. This
design not only provides secure swapping but allows the
OS to optimize swapping by first swapping out traditional
memory pages.

3.4 Security Guarantees
An application that follows the guidelines above on a Virtual
Ghost system obtains a number of strong guarantees, even in
the presence of a hostile or compromised operating system
or administrator account. All these guarantees apply to appli-
cation data allocated in ghost memory. By “attacker” below,
we mean an entity that controls either the OS or any pro-
cess other than the application process itself (or for a multi-
process or distributed application, the set of processes with
which the application explicitly shares ghost memory or ex-
plicitly transfers the contents of that memory).

1. An attacker cannot read or write application data in mem-
ory or in CPU registers.

2. An attacker cannot read or write application code and
cannot subvert application control flow at any point
during the application execution, including application
startup, signal delivery, system calls, or shutdown.



3. An attacker cannot read data that the application has
stored unencrypted in ghost memory while the data is
swapped out to external storage, nor can it modify such
data without the corruption being detected before the data
is swapped back into memory.

4. An attacker cannot read the application’s encryption key,
nor can it modify the application’s encryption key or
executable image undetected. Such modifications will be
detected when setting the application up for execution
and will prevent application startup.

5. By virtue of the application’s encryption key being pro-
tected, data encrypted by the application cannot be read
while stored in external storage or in transit via I/O (e.g.,
across a network). Likewise, any corruption of signed
data will be detected.

4. Enforcing Secure Computation
In this section, we show how Virtual Ghost is designed to
prevent the operating system from violating the integrity or
confidentiality of secure applications. Section 5 describes
implementation details of this design.

4.1 Overview of Virtual Ghost
Our approach for protecting ghost memory is conceptually
simple: we instrument (or “sandbox”) memory access in-
structions in the kernel to ensure that they cannot access this
memory. Virtual Ghost also instruments kernel code with
control-flow integrity (CFI) checks to ensure that our sand-
boxing instrumentation is not bypassed [3, 38].

While sandboxing prevents attacks that attempt to access
ghost memory directly, it does not prevent the other attacks
described in Section 2.2. Our design additionally needs a
way to restrict the interactions between the system software
and both the hardware and applications. For example, our
system must be able to verify (either statically or at run-
time) that MMU operations will not alter the mapping of
physical page frames used for ghost memory, and it must
limit the types of changes that system software can make to
interrupted program state.

To achieve these goals, our system needs a framework
that provides both compiler analysis and instrumentation of
operating system kernel code as well as a way of controlling
interactions between the system software, the hardware, and
applications. The Secure Virtual Architecture (SVA) frame-
work [12, 13] meets these requirements, and we modify and
extend it to support Virtual Ghost. A high-level overview of
our approach, built on SVA, is shown in Figure 1.

4.2 Background: Secure Virtual Architecture
As Figure 1 shows, SVA interposes a compiler-based virtual
machine (VM)2 between the hardware and the operating

2 We use the term “virtual machine” to mean a virtual architecture imple-
mented via a translator and run-time system, similar to a language virtual
machine, and not a guest operating system instance.

system. All operating system software, including the kernel
and device drivers, is compiled to the virtual instruction set
implemented by SVA. The SVA VM translates code from
the virtual instruction set to the native instruction set of
the hardware, typically ahead-of-time, and caches and signs
the translations (although it could also be done just-in-time
while the kernel is running) [14].
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Figure 1. System Organization with Virtual Ghost

The core SVA virtual instruction set is based on the
LLVM compiler intermediate representation (IR) [19], which
is used in many popular systems (e.g., MacOS X, iOS,
and Android) for static and/or just-in-time compilation. The
LLVM IR enables efficient and precise compiler analyses
at compile time, link time, install time, and run time for
arbitrary languages [19].

SVA adds a set of instructions to LLVM called SVA-OS;
these instructions replace the hardware-specific operations
used by an OS to communicate with the hardware and to do
low-level state manipulation [12–14]. SVA-OS handles op-
erations such as saving and restoring processor state, signal
handler dispatch, MMU configuration, and primitive reads
and writes to I/O devices. System calls from an application
are first fielded by SVA-OS, which saves processor state and
performs minor bookkeeping, before passing the system call
on to the OS as an ordinary function call. Modifying an OS
to use the SVA-OS instructions is essentially like porting the
OS to a new architecture, albeit with a clean, higher-level
function interface that simplifies the port.

SVA-OS appears to the kernel as an ordinary run-time li-
brary; in particular, the OS can use these operations as direct
function calls without crossing a protection boundary. The
SVA compiler translates software from the virtual instruc-
tion set to the native instruction set. Moreover, the SVA-OS
instructions are designed so that the SVA VM can perform
run-time checks on all kernel-hardware interactions. This
combination of two capabilities in SVA is unique: it com-
bines the compiler capabilities of a high-level language with
the supervisory control of a hypervisor.

Together, this combination allows SVA to enforce secu-
rity policies on both application and kernel code [12, 13]. For



example, SVA has previously been used to provide memory
safety to the Linux kernel, including the assurance that, even
with dangling pointer and MMU configuration errors, SVA
would enforce a strong set of safety guarantees and sound
points-to analysis [12, 13]. In the present work, we do not re-
quire either memory safety or sound points-to analysis from
SVA. Instead, we use the combination of SVA capabilities to
provide secure computation and I/O with ghost memory.

4.3 Preventing Data Accesses in Memory
In this and the next few subsections, we discuss how Virtual
Ghost addresses each of the five attack vectors described in
Section 2.2.

4.3.1 Controlling Direct Memory Accesses
The SVM VM must perform two kinds of instrumentation
when generating native code for the kernel (both the core
kernel and dynamically loaded kernel modules). First, it
must instrument loads and stores to prevent them from ac-
cessing ghost memory and the SVA VM internal memory.
Recall that application pages are usually left mapped in the
kernel’s address space when entering the kernel on a sys-
tem call, interrupt or trap. By instrumenting loads and stores,
we avoid the need to unmap the ghost memory pages or (as
Overshadow and Inktag do) to encrypt them before an OS
access. Second, it must ensure that the instrumentation can-
not be skipped via control-flow hijacking attacks [3].

By strategically aligning and sizing the SVA VM and
ghost memory partitions, the load/store instrumentation can
use simple bit-masking to ensure that a memory address is
outside these partitions. The control-flow integrity instru-
mentation places checks on all returns and indirect calls to
ensure that the computed address is a valid control-flow tar-
get. To support native code applications, our control-flow in-
tegrity checks also ensure that the address is within the ker-
nel address space. A side benefit of our design is that the
operating system kernel gets strong protection against con-
trol flow hijacking attacks.

4.3.2 MMU Protections
To prevent attacks that use illegal MMU page table entries,
Virtual Ghost extends the MMU configuration instructions
in SVA-OS to perform additional checks at run-time, which
ensure that a new MMU configuration does not leave ghost
memory accessible to the kernel. Specifically, Virtual Ghost
does not permit the operating system to map physical page
frames used by ghost memory into any virtual address. Vir-
tual Ghost also prevents the operating system from modi-
fying any virtual to physical page mapping for virtual ad-
dresses that belong to the ghost memory partition.

Virtual Ghost also protects other types of memory in
addition to ghost memory. The SVA VM internal memory
has the same restrictions as ghost memory. Native code is
similarly protected; Virtual Ghost prevents native code pages
from being remapped or made writable. This prevents the

OS from bypassing the instrumentation or inserting arbitrary
instructions into application code. Native code, unlike ghost
memory or SVA internal memory, is made executable.

4.3.3 DMA Protections
Ghost Memory should never be the target of a legitimate
DMA request. If Virtual Ghost can prevent DMA transfers
to or from ghost physical page frames, then it can prevent
DMA-based attacks.

SVA requires an IOMMU [4] and configures it to prevent
I/O devices from writing into the SVA VM memory [12, 13].
It further provides special I/O instructions for accessing pro-
cessor I/O ports and memory-mapped I/O devices. Both SVA
and Virtual Ghost must prevent the OS from reconfiguring
the IOMMU to expose ghost memory to DMA transfers.
How this is done depends on whether the hardware uses I/O
ports or memory-mapped I/O to configure the IOMMU. If
the hardware uses I/O ports, then SVA uses run-time checks
within the I/O port read and write instructions [12]. If the
hardware uses memory-mapped I/O, then SVA and Virtual
Ghost simply use the MMU checks described above to pre-
vent the memory-mapped physical pages of the IOMMU de-
vice from being mapped into the kernel or user-space virtual
memory; instead, it is only mapped into the SVA VM mem-
ory, and the system software needs to use the I/O instructions
to access it.

4.4 Preventing Data Accesses During I/O
Virtual Ghost relies on application-controlled encryption
and hashing to prevent data theft or tampering during I/O
operations, and uses automatic encryption and hashing done
by the Virtual Ghost VM for page swapping, as described in
Section 3.3.

The main design challenge is to find a way to start the ap-
plication with encryption keys that cannot be compromised
by a hostile OS. As noted earlier, Virtual Ghost maintains
a public/private key pair for each system on which it is in-
stalled. We assume that a Trusted Platform Module (TPM)
coprocessor is available; the storage key held in the TPM
is used to encrypt and decrypt the private key used by Vir-
tual Ghost. The application’s object code file format is ex-
tended to contain a section for the application encryption
keys, which are encrypted with the Virtual Ghost public key.
Each time the application is started up, Virtual Ghost de-
crypts the encryption key section with the Virtual Ghost pri-
vate key and places it into its internal SVA VM memory be-
fore transferring control to the application. An application
can use the sva.getKey() instruction to retrieve the key
from the Virtual Ghost VM and store a copy in its ghost
memory. If an application requires multiple private keys,
e.g., for communicating with different clients, it can use its
initial private key to encrypt and save these additional keys
in persistent storage. Thus, Virtual Ghost and the underly-
ing hardware together enable a chain of trust that cannot be
compromised by the OS or other untrusted applications:



TPM storage key⇒ Virtual Ghost private key⇒
Application private key⇒ Additional application keys.

The use of a separate section in the object code format
allows easy modification of the keys by trusted tools. For
example, a software distributor can place unique keys in each
copy of the software before sending the software to a user.
Similarly, a system administrator could update the keys in an
application when the system is in single-user mode booted
from trusted media.

4.5 Preventing Code Modification Attacks
Virtual Ghost prevents the operating system from loading
incorrect code for an application, modifying native code af-
ter it is loaded, or repurposing existing native code instruc-
tion sequences for unintentional execution (e.g., via return-
oriented programming).

To prevent the system software from loading the wrong
code for an application, Virtual Ghost assumes that the ap-
plication is installed by a trusted system administrator (who
may be local or remote). The application’s executable, in-
cluding the embedded, encrypted application key described
in Section 3.3, is signed by Virtual Ghost’s public key when
the application binary is installed. If the system software at-
tempts to load different application code with the applica-
tion’s key, Virtual Ghost refuses to prepare the native code
for execution. The same mechanism is used to authenti-
cate dynamically loaded native code libraries before they are
linked in to the application.

To prevent native code modification in memory, Virtual
Ghost ensures that the MMU maps all native code into non-
writable virtual addresses. It also ensures that the OS does
not map new physical pages into virtual page frames that are
in use for OS, SVA-OS, or application code segments.

Virtual Ghost prevents repurposing existing instruction
sequences or functions simply because the Control Flow In-
tegrity (CFI) enforcement (for ensuring that sandboxing in-
structions are not bypassed) prevents all transfers of control
not predicted by the compiler. For example, a buffer over-
flow in the kernel could overwrite a function pointer, but if an
indirect function call using that function pointer attempted to
go to any location other than one of the predicted callees of
the function, the CFI instrumentation would detect that and
terminate the execution of the kernel thread.

Finally, Virtual Ghost also prevents the OS from subvert-
ing signal dispatch to the application, e.g., by executing ar-
bitrary code instead of the signal handler in the application
context. Although this is essentially a code modification at-
tack, the mechanisms used to defend against this are based
on protecting interrupted program state, described next.

4.6 Protecting Interrupted Program State
An attacker may attempt to read interrupted program state
(the program state that is saved on a system call, inter-
rupt, or trap) to glean confidential information. Alternatively,

she may modify the interrupted program state to mount a
control-hijack or non-control data attack on the application.
Such an attack could trick the application into copying data
from ghost memory into traditional memory where the op-
erating system can read or write it. Note that such an attack
works even on a completely memory-safe program. We have
implemented such an attack as described in Section 7.

The SVA framework (and hence Virtual Ghost) calls this
interrupted program state the Interrupt Context. The creation
and maintenance of the Interrupt Context is performed by the
SVA virtual machine. While most systems save the Interrupt
Context on the kernel stack, Virtual Ghost saves the Interrupt
Context within the SVA VM internal memory. Virtual Ghost
also zeros out registers (except registers passing system call
arguments for system calls) after saving the Interrupt Con-
text but before handing control over to the OS. With these
two features, the OS is unable to read or modify the Inter-
rupt Context directly or glean its contents from examining
current processor state.

The OS does need to make controlled changes to the
Interrupt Context. For example, process creation needs to
initialize a new Interrupt Context to return from the fork()
system call [9], and signal handler dispatch needs to modify
the application program counter and stack so that a return-
from-interrupt instruction will cause the application to start
executing its signal handler [9, 25].

SVA provides instructions for manipulating the Interrupt
Context, and Virtual Ghost enhances the checks on them to
ensure that they do not modify the Interrupt Context in an
unsafe manner, as explained below.

4.6.1 Secure Signal Handler Dispatch
Virtual Ghost provides instructions for implementing secure
signal handler dispatch. Signal handler dispatch requires
saving the Interrupt Context, modifying the interrupted pro-
gram state so that the signal handler is invoked when the
interrupted application is resumed, and then reloading the
saved Interrupt Context back into the interrupted program
state buffer when the sigreturn() system call is called.

Virtual Ghost pushes and pops a copy of the Interrupt
Context on and off a per-thread stack within the SVA VM in-
ternal memory, whereas the original SVA let this live on the
kernel stack for unprivileged applications [12, 13] (because
SVA did not aim to protect application control flow from the
OS, whereas Virtual Ghost does). This enhancement to the
original SVA design ensures that the OS cannot modify the
saved state and ensures that the OS restores the correct state
within the correct thread context.

SVA provides an operation, sva.ipush.function(),
which the operating system can use to modify an Interrupt
Context so that the interrupted program starts execution in
a signal handler. The OS passes in a pointer to the appli-
cation function to call and the arguments to pass to this
function, and Virtual Ghost modifies the Interrupt Context
on the operating system’s behalf. For efficiency, we allow



sva.ipush.function() to modify the application stack
even though the stack may be within ghost memory. Since
Virtual Ghost only adds a function frame to the stack, it can-
not read or overwrite data that the application is using.

To ensure that the specified function is permissible, Vir-
tual Ghost provides an operation, sva.permitFunction(),
which the application must use to register a list of functions
that can be “pushed”; sva.ipush.function() refuses to
push a function that is not in this list. To simplify applica-
tion development, we provide wrappers for the signal and
sigaction system calls, which register the signal handlers
transparently, without needing to modify the application.

4.6.2 Secure Process Creation
A thread is composed of two pieces of state: an Interrupt
Context, which is the state of an interrupted user-space pro-
gram, and a kernel-level processor state that Virtual Ghost
calls Thread State that represents the state of the thread be-
fore it was taken off the CPU.3 Creating a new thread re-
quires creating a new Interrupt Context and Thread State.

While commodity operating systems create these struc-
tures manually, Virtual Ghost provides a single function,
sva.newstate(), to create these two pieces of state. This
function creates these new state structures within the SVA
VM internal memory to prevent tampering by the system
software. The newly created Interrupt Context is a clone of
the Interrupt Context of the current thread. The new Thread
State is initialized so that, on the next context switch, it be-
gins executing in a function specified by the operating sys-
tem. In order to maintain kernel control-flow integrity, Vir-
tual Ghost verifies that the specified function is the entry
point of a kernel function.

Any ghost memory belonging to the current thread will
also belong to the new thread; this transparently makes it
appear that ghost memory is mapped as shared memory
among all threads and processes within an application.

Executing a new program (e.g., via the execve() system
call) also requires reinitializing the Interrupt Context [9]:
the program counter and stack pointer must be changed to
execute the newly loaded program image, and, in the case of
the first user-space process on the system (e.g., init), the
processor privilege level must be changed from privileged
to unprivileged. Virtual Ghost also ensures that the program
counter points to the entry of a program that has previously
been copied into SVA VM memory. (Section 4.5 describes
how Virtual Ghost ensures that this program is not tampered
with by the OS before or during this copy operation.)

Finally, any ghost memory associated with the interrupted
program is unmapped when the Interrupt Context is reinitial-
ized. This ensures that newly loaded program code does not
have access to the ghost memory belonging to the previously
executing program.

3 SVA divided Thread State into Integer State and Floating Point State, as
an optimization. Virtual Ghost does not do that.

4.7 Mitigating System Service Attacks
System service attacks like those described in Section 2.2.5
are not yet well understood [10]. However, Virtual Ghost
provides some protection against such attacks that are known.

First, Virtual Ghost employs an enhanced C/C++ com-
piler that instruments system calls in ghosting applications
to ensure that pointers passed into or returned by the operat-
ing system are not pointing into ghost memory. This instru-
mentation prevents accidental overwrites of ghost memory.
This protects private data and prevents stack-smashing at-
tacks (because the stack will be located in ghost memory).

Second, the Virtual Ghost VM provides an instruction for
generating random numbers. The random number generator
is built into the Virtual Ghost VM and can be trusted by ap-
plications for generating random numbers. This defeats Iago
attacks that feed non-random numbers to applications [10].

While these protections are far from comprehensive, they
offer protection against existing system service attacks.

5. Implementation
To create Virtual Ghost, we implemented a new version
of the SVA-OS instructions and run-time for 64-bit x86
processors, reusing code from the original 32-bit, single-core
implementation [12, 13]. Our implementation runs 64-bit
code only. The Virtual Ghost instructions are implemented
as a run-time library that is linked into the kernel.

We ported FreeBSD 9.0 to the Virtual Ghost/SVA-OS in-
struction set. We used FreeBSD instead of Linux (which we
had used before with SVA-OS) because FreeBSD compiles
with the LLVM compiler out of the box.

Virtual Ghost builds on, modifies, and adds a number of
SVA-OS operations to implement the design described. We
briefly summarize them here, omitting SVA-OS features that
are needed for hosting a kernel and protecting SVA itself, but
not otherwise used by Virtual Ghost for application security.
We first briefly describe the compiler instrumentation and
end with a brief summary of features that are not yet imple-
mented.

Compiler Instrumentation: The load/store and CFI instru-
mentation is implemented as two new passes in the LLVM
3.1 compiler infrastructure. The load/store instrumentation
pass transforms code at the LLVM IR level; it instruments
mid-level IR loads, stores, atomic operations, and calls to
memcpy(). The CFI instrumentation pass is an updated ver-
sion of the pass written by Zeng et. al. [38] that works on
x86 64 machine code. It analyzes the machine code that
LLVM 3.1 generates and adds in the necessary CFI labels
and checks. It also masks the target address to ensure that it
is not a user-space address. We modified the Clang/LLVM
3.1 compiler to use these instrumentation passes when com-
piling kernel code. To avoid link-time interprocedural anal-
ysis, which would be needed for precise call graph construc-
tion, our CFI instrumentation uses a very conservative call
graph: we use one label both for call sites (i.e., the targets



of returns) and for the first address of every function. While
conservative, this call graph allows us to measure the perfor-
mance overheads and should suffice for stopping advanced
control-data attacks.

We placed the ghost memory partition into an unused 512
GB portion of the address space (0xffffff0000000000
– 0xffffff8000000000). The load/store instrumentation
determines whether the address is greater than or equal to
0xffffff0000000000 and, if so, ORs it with 239 to ensure
that the address will not access ghost memory. While our
design would normally use some of this 512 GB partition for
SVA internal memory, we opted to leave the SVA internal
memory within the kernel’s data segment; we added new
instrumentation to kernel code, which changes an address
to zero before a load, store, or memcpy() if it is within the
SVA internal memory. This additional instrumentation adds
some overhead but simplifies development.

To defend against Iago attacks through the mmap system
call, a separate mid-level LLVM IR instrumentation pass
performs identical bit-masking instrumentation to the return
values of mmap() system calls for user-space application
code.4 This instrumentation moves any pointer returned by
the kernel that points into ghost memory out of ghost mem-
ory. In this way, Iago attacks using mmap() [10] cannot trick
an application into writing data into its own ghost memory. If
an application stores its stack and function pointers in ghost
memory, then our defense should prevent Iago attacks from
subverting application control flow integrity.

Memory Management: SVA-OS provides operations that
the kernel uses to insert and remove page table entries at
each level of a multi-level page table and ensures that they do
not violate internal consistency of the page tables or the in-
tegrity of SVA code and data. Virtual Ghost augments these
operations to also enforce the MMU mapping constraints de-
scribed in Section 4.3.2.

Launching Execution: Virtual Ghost provides the opera-
tion, sva.reinit.icontext(), to reinitialize an Interrupt
Context with new application state. This reinitialization will
modify the program counter and stack pointer in the Inter-
rupt Context so that, when resumed, the program will begin
executing new code.

Virtual Ghost uses the x86 64 Interrupt Stack Table (IST)
feature [2] to protect the Interrupt Context. This feature
instructs the processor to always change the stack pointer to
a known location on traps or interrupts regardless of whether
a change in privilege mode occurs. This allows the SVA
VM to direct the processor to save interrupted program state
(such as the program counter) within the SVA VM internal
memory so that it is never accessible to the operating system.

Signal Delivery: Virtual Ghost implements the
sva.icontext.save() and sva.icontext.load() in-

4 An alternative implementation method would be to implement a C library
wrapper function for mmap().

structions to save and restore the Interrupt Context before
and after signal handler dispatch. These instructions save
the Interrupt Context within SVA memory to ensure that the
OS cannot read or write it directly.

What Is Not Yet Implemented: Our implementation so far
does not include a few features described previously. (1)
While explicit I/O is supported, the key management func-
tions are only partially implemented: Virtual Ghost does not
provide a public/private key pair; does not use a TPM; and
application-specific keys are not embedded in application bi-
naries (instead, a 128-bit AES application key is hard-coded
into SVA-OS for our experiments). (2) Swapping of ghost
memory is not implemented. (3) The system does not yet in-
clude the DMA protections. We believe that IOMMU config-
uration is rare, and therefore, the extra protections for DMA
should not add noticeable overhead. (4) Finally, some op-
erations in the FreeBSD kernel are still handled by inline
assembly code (e.g., memory-mapped I/O loads and stores),
but we do not believe that these unported operations will sig-
nificantly affect performance once they are ported properly.

Trusted Computing Base: Since the Virtual Ghost imple-
mentation is missing a few features, measuring the size of its
Trusted Computing Base (TCB) is premature. However, the
vast majority of the functionality has been implemented, and
the current code size is indicative of the approximate size of
the TCB. Virtual Ghost currently includes only 5,344 source
lines of code (ignoring comments, whitespace, etc.). This
count includes the SVA VM run-time system and the passes
that we added to the compiler to enforce our security guar-
antees. Overall, we believe that the complexity and attack
surface of Virtual Ghost are far smaller than modern pro-
duction hypervisors like XenServer but approximately com-
parable to a minimal hypervisor.

6. Securing OpenSSH
To demonstrate that our system can secure real applica-
tions, we modified three programs from the OpenSSH 6.2p1
application suite to use ghost memory: ssh, ssh-keygen,
and ssh-agent. The ssh-keygen program generates pub-
lic/private key pairs which ssh can use for password-less
authentication to remote systems. The ssh-agent server
stores private encryption keys which the ssh client may use
for public/private key authentication. We used a single pri-
vate “application key” for all three programs so that they
could share encrypted files.

We modified ssh-keygen to encrypt all the private au-
thentication key files it generates with the application key;
our ssh client decrypts the authentication keys with the ap-
plication private key upon startup and places them, along
with all other heap objects, into ghost memory. Since the OS
cannot gain access to the application key, it cannot decrypt
the authentication keys that are stored on disk, and it can-
not read the cleartext versions out of ssh’s or ssh-keygen’s
ghost memory.



We modified the FreeBSD C library so that the heap al-
locator functions (malloc(), calloc(), realloc()) allo-
cate heap objects in ghost memory instead of in traditional
memory; the changes generate a 216 line patch. To ease port-
ing, we wrote a 667-line system call wrapper library that
copies data between ghost memory and traditional mem-
ory as necessary. This wrapper library also provides wrap-
pers for signal() and sigaction() that register the signal
handler functions with Virtual Ghost before calling the ker-
nel’s signal() and sigaction() system calls. The com-
piler and linker did not always resolve system calls to our
wrapper functions properly, so we made some manual mod-
ifications to the programs. We also modified the programs to
use traditional memory (allocated via mmap()) to store the
results of data to be sent to stdout and stderr to reduce
copying overhead. In total, our changes to OpenSSH can be
applied with a patch that adds 812 and deletes 68 lines of
code (OpenSSH contains 9,230 source lines of code).

We tested our applications on the system used for our ex-
periments (see Section 8). We used ssh-keygen to generate
a new private and public key for DSA authentication; the
generated private key was encrypted while the public key
was not encrypted. We then installed the public key on an-
other system and used ssh to log into that system using DSA
authentication.

For ssh-agent, we added code to place a secret string
within a heap-allocated memory buffer. The rootkit attacks
described in Section 7 attempt to read this secret string. The
goal of adding this secret string is that ssh-agent treats
it identically to an encryption key (it can use the string
internally but never outputs it to another program). We used
a secret string as it is easier to find in memory and easier to
identify as the data for which our attack searches.

Our enhanced OpenSSH application suite demonstrates
that Virtual Ghost can provide security-critical applications
with in-memory secrets (e.g., the keys held by ssh-agent)
and secure, long-term storage (e.g., the authentication keys
created by ssh-keygen and read by ssh). It also demon-
strates that a suite of cooperating applications can securely
share data on a hostile operating system via a shared appli-
cation key.

7. Security Experiments
To evaluate the security of our system, we built a malicious
kernel module that attempts to steal sensitive information
from a victim process. This module, based on the code
from Joseph Kong’s book [18], can be configured by a non-
privileged user to mount one of two possible attacks – direct
memory access or code injection – on a given victim process.
The malicious module replaces the function that handles the
read() system call and executes the attack as the victim
process reads data from a file descriptor.

In the first attack, the malicious module attempts to di-
rectly read the data from the victim memory and print it to
the system log.

In the second attack, the malicious module attempts to
make the victim process write the confidential data out to a
file. The attack first opens the file to which the data should
be written, allocates memory in the process’s address space
via mmap(), and copies exploit code into the memory buffer.
The attack then sets up a signal handler for the victim pro-
cess that calls the exploit code. The malicious module then
sends a signal to the victim process, triggering the exploit
code to run in the signal handler. The exploit code copies the
data into the mmap’ed memory and executes a write() sys-
tem call to write the secret data out to the file opened by the
malicious module.

We used both attacks on our ssh-agent program, described
in Section 6. When we install the malicious module with-
out instrumenting its code and run ssh-agent with malloc()

configured to allocate memory objects in traditional mem-
ory, both attacks succeed.

We then recompiled our malicious module using our
modified Clang compiler to insert the instrumentation re-
quired for Virtual Ghost. We reran both attacks on ssh-agent
with malloc() configured to allocate memory objects in
ghost memory. The first attack fails because the load/store
instrumentation changes the pointer in the malicious mod-
ule to point outside of ghost memory; the kernel simply
reads unknown data out of its own address space. The sec-
ond attack is thwarted because sva.ipush.function()

recognizes that the exploit code isn’t one of the functions
registered as a valid target of sva.ipush.function().

Note that a number of other possible attacks from within
kernel code are simply not expressible in our system, e.g.,
anything that requires using assembly code in the kernel
(such as to access CPU registers), or manipulating the ap-
plication stack frames, or modifying interrupted application
state when saved in memory. The second attack above illus-
trates that much more sophisticated multi-step exploits are
needed to get past the basic protections against using assem-
bly code or accessing values saved in SVA VM memory or
directly reading or writing application code and data (as in
the first attack). Virtual Ghost is successfully able to thwart
even this sophisticated attack.

8. Performance Experiments
We ran our performance experiments on a Dell Precision
T1650 workstation with an Intel R© CoreTM i7-3770 proces-
sor at 3.4 GHz with 8 MB of cache, 16 GB of RAM, an inte-
grated PCIE Gigabit Ethernet card, a 7200 RPM 6 Gb/s 500
GB SATA hard drive, and a 256 GB Solid State Drive (SSD).
Files in /usr were stored on the SSD. For network experi-
ments, we used a dedicated Gigabit Ethernet network. The
client machine was an iMac with a 4-core hyper-threaded
Intel R© CoreTM i7 processor at 2.6 GHz with 8 GB of RAM.



We evaluated our system’s performance on microbench-
marks as well as a few applications. We used microbench-
marks to see how Virtual Ghost affects primitive OS opera-
tions, thttpd and sshd for network applications, and Post-
mark [30] for a file system intensive program.

We conducted our experiments by booting the machine
into single-user mode to minimize noise from other pro-
cesses running on the system. Our baseline, unless otherwise
noted, is a native FreeBSD kernel compiled with the LLVM
3.1 compiler and configured identically to our Virtual Ghost
FreeBSD kernel.

8.1 Microbenchmarks
In order to understand how our system affects basic OS
performance, we measured the latency of various system
calls using LMBench [26] from the FreeBSD 9.0 ports tree.
For those benchmarks that can be configured to run the test
for a specified number of iterations, we used 1,000 iterations.
Additionally, we ran each benchmark 10 times.

Test Native Virtual Ghost Overhead InkTag
null syscall 0.091 0.355 3.90x 55.8x
open/close 2.01 9.70 4.83x 7.95x
mmap 7.06 33.2 4.70x 9.94x
page fault 31.8 36.7 1.15x 7.50x
signal handler
install

0.168 0.545 3.24x -

signal handler
delivery

1.27 2.05 1.61x -

fork + exit 63.7 283 4.40x 5.74x
fork + exec 101 422 4.20x 3.04x
select 3.05 10.3 3.40x -

Table 2. LMBench Results. Time in Microseconds.

File Size Native Virtual Ghost Overhead
0 KB 166,846 36,164 4.61x
1 KB 116,668 25,817 4.52x
4 KB 116,657 25,806 4.52x
10 KB 110,842 25,042 4.43x

Table 3. LMBench: Files Deleted Per Second.

File Size Native Virtual Ghost Overhead
0 KB 156,276 33,777 4.63x
1 KB 97,839 18,796 5.21x
4 KB 97,102 18,725 5.19x
10 KB 85,319 18,095 4.71x

Table 4. LMBench: Files Created Per Second.

As Table 2 shows, our system can add considerable over-
head to individual operations. System call entry increases
by 3.9 times. We compare these relative slowdowns with
InkTag, which has reported LMBench results as well [16].
Our slowdowns are nearly identical to or better than InkTag
on 5/7 microbenchmarks: all except exec() and file dele-
tion/creation. Our file deletion/creation overheads (shown in

Tables 3 and 4) average 4.52x and 4.94x, respectively, across
all file sizes, which is slower than InkTag. System calls and
page faults, two of the most performance critical OS opera-
tions, are both considerably faster on Virtual Ghost than on
InkTag.

While Virtual Ghost adds overhead, it provides double
benefits for the cost: in addition to ghost memory, it provides
protection to the OS itself via control flow integrity.

8.2 Web Server Performance
We used a statically linked, non-ghosting version of the
thttpd web server [29] to measure the impact our system
had on a web server. We used ApacheBench [1] to measure
the bandwidth of transferring files between 1 KB and 1 MB
in size. Each file was generated by collecting random data
from the /dev/random device and stored on the SSD. We
configured ApacheBench to make 100 simultaneous connec-
tions and to perform 10,000 requests for the file for each run
of the experiment. We ran each experiment 20 times.

Figure 2 shows the mean performance of transferring a
file of each size and displays the standard deviation as error
bars. The data show that the impact of Virtual Ghost on the
Web transfer bandwidth is negligible.
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8.3 OpenSSH Performance
To study secure bulk data transfer performance, we mea-
sured the bandwidth achieved when transferring files of var-
ious sizes using the OpenSSH server and client [36]. We
measured the performance of the sshd server without ghost-
ing and our ghosting ssh client described in Section 6. Files
were created using the same means described in Section 8.2.

8.3.1 Server Performance Without Ghosting
We ran the pre-installed OpenSSH server on our test ma-
chine and used the standard Mac OS X OpenSSH scp client
to measure the bandwidth achieved when transferring files.



We repeated each experiment 20 times and report standard
deviation bars. The baseline system is the original FreeBSD
9.0 kernel compiled with Clang and configured identically
to our Virtual Ghost FreeBSD kernel.

Figure 3 shows the mean bandwidth for the baseline sys-
tem and Virtual Ghost. We observe bandwidth reductions of
23% on average, with a worst case of 45%, and negligible
slowdowns for large file sizes.
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8.4 Client Performance With Ghosting
To measure the effect of using ghost memory, we measured
the average bandwidth of transferring file sizes of 1 KB
to 1 MB using both the unmodified OpenSSH ssh client
and our ghosting ssh client described in Section 6. We
transferred files by having ssh run the cat command on the
file on the server. We ran both on the Virtual Ghost FreeBSD
kernel to isolate the performance differences in using ghost
memory. We transferred each file 20 times. Figure 4 reports
the average of the 20 runs for each file size as well as
the standard deviation using error bars. (The numbers differ
from those in Figure 3 because this experiment ran the ssh
client on Virtual Ghost, instead of the sshd server.)
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As Figure 4 shows, the performance difference between
using traditional memory, which is accessible to the OS,

and ghost memory is small. The maximum reduction in
bandwidth by the ghosting ssh client is 5%.

8.5 Postmark Performance
In order to test a file system intensive benchmark, we ran
Postmark [30]. Postmark mimics the behavior of a mail
server and exercises the file system significantly.

Native (s) Std. Dev. Virtual Ghost (s) Std. Dev. Overhead
14.30 0.46 67.50 0.50 4.72x

Table 5. Postmark Results

We configured Postmark to use 500 base files with sizes
ranging from 500 bytes to 9.77 KB with 512 byte block
sizes. The read/append and create/delete biases were set to
5, and we configured Postmark to use buffered file I/O. All
files were stored on the SSD. Each run of the experiment
performed 500,000 transactions.

We ran the experiment 20 times on both the native
FreeBSD kernel and the Virtual Ghost system. Table 5 shows
the results. As Postmark is dominated by file operations, the
slowdown of 4.7x is similar to the LMBench open/close
system call overhead of 4.8x. Due to its file system inten-
sive behavior, Postmark represents the worst case for the
application benchmarks we tried.

9. Related Work
Several previous systems attempt to protect an application’s
code and data from a malicious operating system. Systems
such as Overshadow [11, 28], SP3 [37], and InkTag [16]
build on a full-scale commercial hypervisor (e.g., VMWare
Server or XenServer). The hypervisor presents an encrypted
view of the application’s memory to the OS and uses digital
signing to detect corruption of the physical pages caused by
the OS. These systems do not prevent the OS from reading or
modifying the encrypted pages. To simplify porting legacy
applications, such systems include a shim library between
the application and the operating system that encrypts and
decrypts data for system call communication.

Hypervisor-based approaches offer a high level of com-
patibility with existing applications and operating systems,
but suffer high performance overhead. Additionally, they
add overhead to the common case (when the kernel reads/writes
application memory correctly via the system call API). They
also do not provide additional security to the operating sys-
tem and do not compose as cleanly with other kernel security
solutions that use hypervisor-based approaches.

Virtual Ghost presents a different point in the design
space for protecting applications from an untrusted OS.
First, it uses compiler instrumentation (“sandboxing” and
control-flow integrity) instead of page protections to pro-
tect both application ghost memory pages as well as its
own code and metadata from the OS (similar to systems
such as SPIN [8], JavaOS [33], and Singularity [15, 17]).



Second, it completely prevents the OS from reading and
writing ghost memory pages rather than allowing access to
the pages in encrypted form. Third, although Virtual Ghost
introduces a hardware abstraction layer (SVA-OS) that is
somewhat similar to a (minimal) hypervisor, SVA-OS does
not have higher privilege than the OS; instead, it appears
as a library of functions that the OS kernel code can call
directly. Fourth, system calls from the secure application to
the OS need not incur encryption and hashing overhead for
non-secure data. Fifth, Virtual Ghost gives the application
considerably more control over the choices of encryption
and hashing keys, and over what subset of data is protected.
Finally, the compiler approach hardens the OS against exter-
nal exploits because it prevents both injected code and (by
blocking control-flow hijacking) exploits that use existing
code, such as return-oriented programming or jump-oriented
programming. Moreover, the compiler approach can be di-
rectly extended to provide other compiler-enforced security
policies such as comprehensive memory safety [12, 13].

In addition to isolation, InkTag [16] also provides some
valuable usability improvements for secure applications, in-
cluding services for configuring access control to files. These
features could be provided by SVA-OS in very similar ways,
at the cost of a non-trivial relative increase in the TCB size.

Other recent efforts, namely TrustVisor [22], Flicker [23],
and Memoir [27], provide special purpose hypervisors that
enable secure execution and data secrecy for pieces of ap-
plication logic. They obtain isolated execution of code and
data secrecy via hardware virtualization. These approaches
prevent the protected code from interacting with the system,
which limits the size of code regions protected, and data
must be sealed via trusted computing modules between suc-
cessive invocations of the secure code. In contrast, Virtual
Ghost provides continuous isolation of code and data from
the OS without the need for secure storage or monopolizing
system wide execution of code.

Several systems provide hardware support to isolate ap-
plications from the environment, including the OS. The
XOM processor used by XOMOS [20] encrypts all instruc-
tions and data transferred to or from memory and can detect
tampering of the code and data, which enables a secure ap-
plication on XOMOS to trust nothing but the processor (not
even the OS or the memory system). HyperSentry [7] uses
server-class hardware for system management (IPMI and
SMM) to perform stealthy measurements of a hypervisor
without using software at a higher privilege level, while pro-
tecting the measurements from the hypervisor. These mech-
anisms are designed for infrequent operations, not for more
extensive computation and I/O.

ARM Security Extensions (aka TrustZone) [6] create two
virtual cores, operating as two isolated “worlds” called the
Secure World and the Normal World, on a single physical
core. Applications running in the Secure World are com-
pletely isolated from an OS and applications running in the

Normal World. Secure World applications can use periph-
eral devices such as a keyboard or display securely. Virtual
Ghost and any other pure-software scheme would need com-
plex additional software to protect keyboard and display I/O.
Intel Software Guard eEtensions (SGX) provide isolated ex-
ecution zones called enclaves that are protected from privi-
leged software access including VMMs, OS, and BIOS [24].
The enclave is protected by ISA extensions and hardware
access control mechanisms and is similar to Virtual Ghost in
that it protects memory regions from the OS. Additionally,
SGX provides both trusted computing measurement, seal-
ing, and attestation mechanisms [5]. Unlike TrustZones and
SGX, Virtual Ghost requires no architectural modifications
and could provide a secure execution environment on sys-
tems that lack such hardware support.

10. Future Work
We have several directions for future work. First, we plan
to investigate how applications can use Virtual Ghost’s fea-
tures along with cryptographic protocols to protect them-
selves from sophisticated attacks. For example, how should
applications ensure that the OS does not perform replay at-
tacks by providing older versions of previously encrypted
files? How should applications share keys and authenticate
themselves to each other? Second, while Virtual Ghost pro-
vides applications with great flexibility in protecting their
data, taking advantage of this flexibility can be tedious. We
plan to investigate library support that will make writing se-
cure applications with Virtual Ghost more convenient.

11. Conclusion
In this paper, we present Virtual Ghost, which provides ap-
plication security in the face of untrusted operating systems.
Virtual Ghost does not require a higher-privilege layer, as
hypervisors do; instead, it applies compiler instrumentation
combined with runtime checks on operating system code to
provide ghost memory to applications. We ported a suite
of real-world applications to use ghost memory and found
that Virtual Ghost protected the applications from advanced
kernel-level malware. We observe comparable performance,
and much better in some instances, than the state of the art
in secure execution environments, while also providing an
additional layer of protection against external attacks on the
operating system kernel itself.
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